MOLECULAR STRUCTURE OF

2-TROPONYLETHOXYCARBONYLMETHYLENETRIPHENYLPHOSPHONIUM BETAINE

Isao Kawamoto, Tadashi Hate, Yukichi Kishida, and Chihiro Tamura

Central Research Laboratories, Sankyo Co., Ltd.

Hiromachi, Shinagawa-ku, Tokyo, Japan

(Received in Japan 9 March 1972; received in UK for publication 14 March 1972)

It is known that pentacovalent phosphoranes having positive chemical shifts $(+32.1 \sim +89 \text{ ppm relative to } 85\% \text{ H}_3\text{PO}_4)$ in P^{31} nmr spectrum have the trigonal bipyramidal phosphorus.¹, ^{2a-d} On the course of our chemical and crystallographic investigations,³ we reported the structure of 2-troponylcyanomethylene-triphenylphosphonium betaine (Ia), which was characterized by a negative chemical shift (-6.8 ppm relative to $85\% \text{ H}_3\text{PO}_4$), wherein the phosphorus atom was close to the center of a tetrahedral configuration. Our attention was directed to the geometry of the phosphorus atom in connection with the chemical shift in P^{31} nmr spectrum. A very interesting finding is that even 2-troponylethoxy-carbonylmethylenetriphenylphosphonium betaine (Ib) which has a positive chemical shift (+66.9 ppm relative to $85\% \text{ H}_3\text{PO}_4$), does not form the P-O covalent bond and the geometry of the phosphorus atom is close to the trigonal bipyramidal structure.

Investigated Ib (yellow in colour) exhibited: mp $182-3^{\circ}$ C; $C_{29}H_{25}O_{3}P$ (based on mass and analytical data); IR V(nujol) 1674, 1586, 1502 cm⁻¹; UV λ max (EtOH) 266 (log $\varepsilon = 4.27$), 272 (log $\varepsilon = 4.27$), 403 (log $\varepsilon = 3.99$), 463 (log $\varepsilon = 3.96$) mµ; H¹ nmr (CDCl₃) § ppm, 6.23-7.93 (m, 20H), 3.53 (q, 2H, J = 7.5 Hz), 0.82 (t, 3H, J = 7.5 Hz); P³¹ nmr (CDCl₃, vs. 85% H₃PO₄) § P³¹ = +66.9 ppm.

X-ray diffraction studies of Ib showed it to be orthorhombic, space group Pna2₁ with unit cell dimensions a = 16.94, b = 8.79, c = 15.71 Å, V = 2339.26 Å³, Z = 4, Dcalc. = 1.29 gcm⁻³, Dobs. = 1.27 gcm⁻³. A total of 1883 threedimensional intensity data below $2\theta = 60^{\circ}$ was collected on a Rigaku autodiffractometer by the $3-2\theta$ scan method with Mo-Ka radiation. The structure was solved by the heavy atom technique using the phosphorus atom. The final atomic parameters refined by the least-squares procedures are shown in Table 1. The R factor reached to 0.071.

Figure 1 shows the molecule projected along the a axis. Compound Ib does not form the P-O covalent bond, but evidently there is some strong interaction⁴ between the phosphorus and oxygen atoms since the intramolecular P(2)---O(1) distance of 2.14 Å is cosiderably longer than the P-O(apical) covalent bond in oxyphosphoranes (1.76-1.79 Å),^{2a-d} and is shorter than that found in Ia (2.36 Å). Furthermore the intramolecular P(2)-O(13) distance, 3.05 Å, lies below the sum of the van der Waals radii (3.30 Å). The bond lengths of C(10)-O(1) and P(2)-C(3) are 1.27 and 1.76 Å, which are significantly longer than those found in Ia, 1.22 and 1.70 Å, respectively. These interesting

observations suggest that the resulting P---O distance may be regarded as "bonding betaine $(V)^5$ " which would be stabilized by a resonance hybrid between the covalent(II) and ionic (I) forms among these structures.⁶ In other systems, short S---O intramolecular distances were observed in homologues of thio-thiophthene.⁷

The phosphorus atom deviates 0.281 Å from the equatorial plane (C(3), C(16) and C(22)), while that in Ia deviates 0.371 Å. The ϕ ee angles in the phosphorus atom are 121.0°, 120.4°, and 111.4°, and the ϕ ae angles are 100.5°, 102.8°, and 93.4°. The mean angle of ϕ ee is 117.6°, and that of ϕ ae is 98.9°. These values indicate that the phosphorus atom is located closer to the center of a trigonal bipyramid than in the case of Ia as shown in Figure 2.

The heptafulvene moiety $(C(3) \sim C(10))$ in this compound is planar and the maximum deviation from the least-squares plane is 0.01 Å, and the exocyclic internal rotation angle between C(3) and C(4) atoms is 11.1° .

The structure determination of some other derivatives having positive

Figure 1. The 2-troponylethoxycarbonylmethylenetriphenylphosphonium betaine molecule projected along the a axis.

Table 1. Atomic fractional coordinates with estimated standard deviations in parentheses.

Figure 2. Projection of the atoms (C(3), C(22), C(28), and O(13)) on the plane (O(1)-P(2)-C(16)).

ATON	X/a	¥/ъ	Z/c
ATON 0 1 P 2 3 C 4 C 5 C 6 C 7 C 8 C 9 C11 C12 C14 C15 C16 C16 C16 C16 C19 C22 C22 C22 C22 C22 C22 C22 C2	X/a .0541(4) .0224(1) .122(5) .1122(5) .1122(5) .2027(6) .2027(6) .2046(6) .1350(6) .1350(6) .1350(6) .1007(4) .0165(4) -0165(4) 0165(4) 2263(6) 2263(6) .1675(6) .0803(5) .0803(5) .0808(8) .1706(8) .2038(6) .1602(6)	Y/b 0669(7) .1468(2) .2109(8) .1097(8) .1097(8) .097(8) 0821(13) 089(11) 1784(11) 0488(9) .3720(9) .4551(7) .4148(7) .4148(7) .5738(12) .6852(16) .0667(9) .1508(12) .0915(14) 0524(14) 0524(14) .0651(9) .0408(11) .0127(15) 0127(15) 0126(13)	2/c -5532(4) -4970(2) -5903(5) -6409(5) -7670(6) -7731(7) -717(8) -6541(7) -6164(5) -6164(5) -6126(4) -6412(11) -5007(6) -5391(6) -5460(8) -5176(7) -4720(7) -3322(6) -2644(7) -2750(8) -3521(9) -4208(6)
C27 C28	.1602(6)	.0365(13)	•4208(6)
C28 C29	.0068(5) 0594(5)	.0365(1) .3305(9) .3676(11)	•4208(6) •4408(5) •3964(6)
030 031 032	0646(6) 0003(7)	.5028(14) .5982(11)	·3475(8) ·3435(7)
C33	.0713(5)	.4257(11)	• 3854 (7) • 4308(6)

chemical shifts in P^{31} nmr spectrum is also in progress.

We are thankful to Nichiden Varian Co., Ltd. for measurement of the P^{31} nmr spectra. We are also indebted to the laboratory technicians for measurement of mass, IR, UV and nmr spectra.

References

1. P.J. Wheatley, <u>J. Chem. Soc</u>., 2206 (1964)

- (a) W.C. Hamilton, S.J. LaPlaca, F. Ramirez, and C.P. Smith, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>89</u>, 2268 (1967); (b) R.D. Spratley, W.C. Hamilton, and J. Landell, <u>ibid</u>, <u>89</u>, 2272 (1967); (c) D.D. Swank, C.N. Caughlan, F. Ramirez, and J.F. Pliot, <u>ibid</u>, <u>93</u>, 5236 (1971); (d) M.U. Haque, C.N. Caughlan, F. Ramirez, J.F. Pliot, and C.P. Smith, <u>ibid</u>, <u>93</u>, 5229 (1971)
- I. Kawamoto, T. Hata, Y. Kishida, and C. Tamura, <u>Tetrahedron Letters</u>, <u>26</u>, 2417 (1971)
- 4. This interaction is conceivable due to the d-orbital participation of the phosphorus atom similarly to that of sulphur atom in thio-thiophthene system. See; K. Maeda, <u>Bull. Chem. Soc. Japan</u>, <u>33</u>, 1466 (1960); <u>34</u>, 785, 1166, (1961)
- 5. The spectroscopic data suggested the contribution of phosphole and ylidbetaine structures. See; I. Kawamoto, Y. Sugimura, T. Hata, C. Tamura, N. Soma, and Y. Kishida, Abstracts of the third International Congress of Heterocyclic Chemistry, August, 1971, p. 591.
- Ramirez and his colleagues suggested about the existence of such a structure from the P³¹ nmr spectra. See; F. Ramirez, <u>Accounts Chem. Res.</u>, <u>1</u>, 168 (1968)
- M. Mammi, R. Bardi, G. Traverso, and S. Bezzi, <u>Nature</u>, <u>192</u>, 1282 (1961);
 A. Hordvik and H.M. Kjoge, <u>Acta Chem. Scand</u>., <u>20</u>, 1923 (1966); P.L. Johnson and I.C. Paul, <u>J. Am. Chem. Soc</u>., <u>91</u>, 781 (1969)